Early Detection of Ototoxicity by High-Frequency Audiometry — A Case Study

Gustav R. Voogt, BA(Log) (Pretoria)
Department of Otorhinolaryngology, Medical University of Southern Africa.

ABSTRACT
The effect of an ototoxic aminoglycoside antibiotic (tobramycin) on the hearing acuity of an adult Black female cardiac patient was evaluated with a new type of high-frequency audiometer. Results indicated the effectivity of this audiometer for the early detection of ototoxicity. The possibility of higher susceptibility to ototoxic damage in Blacks due to a higher concentration of melanin in the inner ear is discussed.

OPSOMMING
Die effek van 'n ototoksiese aminoglikosied antibiotikum (tobramycin) op die gehoorsensiwiteit van 'n volwasse Swart vroulike hart-pasiënt is geëvalueer met behulp van 'n nuwe tipe hoefrekwensieoudiometer. Resultate dui op die effectiwiteit van hierdie oudiometer vir die vroëe opsporing van ototoksisiteit. Die moontlikeheid van 'n hoër vatbaarheid vir ototoksiese skade by Swartes as gevolg van 'n hoër konsentrasie van melanien in die binneoor word bespreek.

Conventional diagnostic audiometry generally deals with assessment of auditory sensitivity for frequencies of 8 kHz and below, even though humans can hear tones as high as 16 to 20 kHz. It has also been proven that ototoxic substances first cause a decline in the high-frequency hearing, i.e., above 10 kHz (Schuknecht, 1974).

Various drugs are known to be ototoxic. Of these, tobramycin is rated a highly ototoxic (Lane and Routledge, 1983). In these reports the ototoxic effects were determined by histologic examinations of the hair cell damage occurring in the cochlea and by measuring the resultant decline in hearing sensitivity as measured by conventional pure tone audiometry (Fee, 1980; Smith, Lipsky, Laskin, Hellmann, Mellits, Longstreth and Lietman, 1986; Mats, 1986). Ototoxic agents cause hair cells to begin to degenerate first at the very basal end of the organ of Corti, that part of the cochlea which is used to detect the highest frequencies the living animal can hear. This is a process that gradually and systematically progresses farther into the cochlea (Schuknecht, 1974). By the time this damaging effect becomes visible on a conventional pure tone audiogram valuable time for prevention has passed and permanent damage has been done to the high frequency region in the cochlea. Thus, by measuring high-frequency hearing, drug-induced ototoxic damage can be detected at a much earlier stage (Tonndorf and Korman, 1984).

This preoccupation with testing may be explained by various mechanoaoustic problems encountered when trying to test for the higher frequency auditory thresholds. The biggest problem appears to be in calibration as the quarter and half wavelengths of the higher frequency sound approach ear canal width and length, causing transversal resonances and standing waves to occur. This means that the sound front impinging on the tympanic membrane no longer resembles the sound being fed into the external ear canal (Stinson, 1984; Tonndorf and Korman, 1984). Logically this also leads to immense problems when trying to mask the contralateral ear. A further problem seems to be to find audiometers and transducers capable of producing these high-frequency stimuli at the necessary amplitude and fidelity but still maintaining a reasonably flat response curve. Then there are also a vast number of smaller aspects which still need clarification, e.g., high-frequency interaural attenuation, inter subject variability in responding to high-frequency sounds, etc. Quite a number of large-scale studies of high-frequency hearing can be found in the literature (Rosen, Plester, El-Mofty, and Rosen, 1964; Zalis and Fletcher, 1966; Harris and Myers, 1971; Northern, Downs, Rudnose, Glorig and Fletcher, 1971). It is, however, practically impossible to compare results due to differences in audiometer, transducer, ear coupling, calibration methods and equipment, testing method and environment, population characteristics, selection criteria and very high inter- and intra-individual variability. As such, no normative audiometric threshold values exist for high-frequency audiometry (Fausti, Frey, Erickson and Rappaport, 1979; Fletcher, 1965; De Seta, Bertoli and Filipo, 1985; Gauz and Smith, 1985; Henry, East, Nguyen, Paolinielli and Ayors, 1985).

Furthermore it has been found that certain drugs like the polycyclic amines, especially the aminoglycoside antibiotic tobramycin, has a very high melanin affinity (Potts, 1962a; 1962b; 1964a; 1964b; Potts and As, 1971; 1976, Lindquist, 1973). Add to this the fact that melanin is present in quite large quantities in the cochlea, as first reported by the Italian anatomist Alfonso Corti as far back as 1851. This may be an important factor in the etiology of drug induced ototoxicity (Dencker and Lindquist, 1975; Dencker, Lindquist and Ullberg, 1975; Wasterström, 1984; Wästerström, Brendberg, Lindquist, Lyytens and Rask-Anderson, 1986).

Due to the earlier-mentioned problems encountered when trying to measure high-frequency thresholds, a new type of
high-frequency audiometry, the Tonndorf Audimax Model 900, has recently been developed which could possibly bypass most of these problems (Tonndorf and Kurman, 1984). This audiometer works on the principle of electrostimulation. The test signal is superimposed on a modulated carrier frequency and is delivered via mylar-coated electrodes into the skin over each mastoid (fig. 1). As the subject is then capacitatively coupled to the electrodes, no real current flows between the electrodes and the subject. Numerous studies have identified electrostimulation as a means of audio-transmission of electromechanical vibration in the bone and tissue structures surrounding the inner ear and the cochlea. Thus it would appear that the subject’s bone-conduction hearing is being tested (Sommers and Von Gierke, 1964). This audiometer tests frequencies from 200 Hz right up to 20 kHz in 200 Hz steps. The stimulus intensities can be adjusted from 0 to 120 electrostimulation hearing threshold levels (ESHTL) in 1 ESHTL step sizes. Zero to 120 ESHTL corresponds with zero to 60 dB SPL.

It was therefore decided to use this new audiometer to monitor the very early ototoxic effect of tobramycin on the high-frequency hearing of a Black cardiac surgery patient in Ga-Rankuwa Hospital, near Pretoria.

METHODOLOGY

The subject for this case report is a 25 year old Black woman who required open heart surgery. She had to use tobramycin prophylactically for a period starting immediately after the operation. Before the operation her hearing was tested on two consecutive days by impedance audiometry, conventional pure tone audiometry and high-frequency audiometry. Seeing that both ears tested almost identically the test results for left and right ears were combined. As no standardized norms for high-frequency thresholds exist, it was decided to use the first two high-frequency test results as the biological baseline.

On the day of the operation she received 40 mg tobramycin and thereafter the consecutive doses were altered so that the tobramycin serum levels were maintained between a trough of not less than 2 μg/ml and a peak not exceeding 10 μg/ml. This range is considered ototoxically safe (Matz, 1986). The tobramycin regimen was continued for 72 hours. Throughout this period, the tobramycin blood serum levels were carefully monitored, as well as the renal functioning, in order to guard against possible renal failure. Any renal failure during this period would have resulted in very high serum levels due to the accumulation of tobramycin in the bloodstream.

The hearing test battery as mentioned above was repeated post-operatively on day 3, day 6, day 13 and day 20. On post-operation (PO) day 21 she was discharged from hospital. Three months later when she came to hospital for a follow-up examination her hearing was tested again according to the above test battery. The initial two tests before the operation served to check on test-retest reliability and also served as the control test against which all further test results were to be compared.

RESULTS

On impedance audiometry no differences could be detected for consecutive tests except for very small variations in middle-ear pressure. All the other impedance test results (maximum compliance, acoustic reflex thresholds) remained essentially the same throughout the test period.

Conventional pure tone audiometry test results also remained essentially unchanged, with only about 5 dB total differences in thresholds between tests.

High-frequency audiometry, on the other hand, showed marked changes (fig. 2). The first two pre-operation test results were decidedly identical, indicating very good test-retest reliability. On PO day 3 there was a very clear decrease in high-frequency sensitivity, especially at the high end of the hearing range. This decrease continued as is shown on the PO day 6 test. On PO day 13 there was a marked recovery, but not back to the original pre-operation levels. The last test before the patient was discharged on PO day 20 indicated that the recovery process had ceased and the test results were similar to those of PO day 13. The follow-up test done 3 months after discharge from hospital matched that of PO days 13 and 20, thus indicating that there was no further recovery whatsoever. It is to be noted that this patient did not suffer from any renal dysfunction during the entire period. Thus there was no possibility of tobramycin accumulation due to renal failure which could have led to the tobramycin exceeding the ototoxically safe upper serum level of 10 μg/ml.

DISCUSSION

It would appear that high-frequency audiometry by electrostimulation shows very good test-retest reliability, seeing that the average difference in thresholds between the first two tests was no larger than 5 ESHTL units, corresponding to about 2.0 to 2.5 dB SPL.

High-frequency audiometry could detect ototoxicity at a very early stage, as well as the severity of damage and recovery from damage, whilst standard audiometry and impedance tests were still showing no effects whatsoever of ototoxicity on hearing sensitivity.

It is clear from fig. 2 that the otoxic effect continued long after cessation of drug administration and long after the serum levels indicated no drug residue in the bloodstream. This might be further proof of the possible accumulation of this drug on the melanin of the inner ear. This accumulation could, however, not be proved in this case study as no biopsies could be taken from or histological examinations done on the patient’s inner ear. On the other hand, if the drug really accumulates in the inner ear, the monitoring of drug/serum levels would be of no use, since it would not represent the actual level of tobramycin in the inner ears. It may also be possible that Blacks have more melanin in the inner ear than Whites [Dencker and Lindquist, 1975; Dencker et al. 1975] and are thus more susceptible to ototoxic damage, but this is only speculative as no human experimental data on this aspect could be found in the literature. This possibility has, however, been proven in a study done on albino and pigmented guinea pigs [Wästerström, 1984; Wästerström et al. 1986].

Thus it would appear that the "safe" serum levels for ototoxic drugs were based on hearing tests for frequencies up to 8 kHz only and may really not be safe at all. It would appear that the monitoring of patients for drug-induced ototoxicity should rather be done by high-frequency audiometry or a combination of measuring blood/serum levels and high-frequency audiometry.

CONCLUSION

High-frequency electrostimulation audiometry seems to show good test-retest reliability. It is also very effective in the early detection of ototoxicity, compared to standard audiometry. Ototoxic drug accumulation, possibly on the melanin in the inner ear will have to be investigated further. Also the possibility of Blacks having more melanin in the inner ear and thus a higher susceptibility to drug-induced ototoxicity needs further research. Lastly, a thorough investigation of present ototoxicity "safe" serum levels is required.

ACKNOWLEDGEMENTS

The loan of the Tonndorf Audimax 500 High-Frequency Audiometer by the Needler Westdene Organization Pty Ltd, Johannesburg is acknowledged with thanks.

REFERENCES

Early Detection of Ototoxicity by High-Frequency Audiometry — A Case Study

NEW AUTOMATIC HEARING AID
A truly advanced and innovative sound amplifier

The AUTOMATIC SOUND PROCESSOR (ASP) was developed especially for those people who have difficulty in hearing speech in noisy environments. For years, hearing aid wearers have avoided restaurants, theatres, church and parties because of the inability of an ordinary hearing aid to control background noises. The A.S.P. is simply and uniquely designed to normalize background noise so that speech is more easily understood.

To be able to restore sound to even one human being makes your life especially important.

To restore hearing... what a blessed talent to have

MEDIFIX Hearing System Co.

SURGICAL & MEDICAL
P.O. Box 19
Bedfordview
2008
South Africa
Phone: (011) 53-4188/9

CAPE
P.O. Box 52
Lynedoch
7603
Phone: (02234) 442
or (02231) 93442

NATAL
P.O. Box 47443
Greyville
4023
Phone: (031) 236164

RICHARDS hearing systems
Tomorrow's Technology for Today's Hearing Problem
INLGITNG VIR BYDRAERS

Die Suid-Afrikaanse Tydskrif vir Kommunikeaafwykings publiceert verskeie artikels oor navorsing, of kri eties evalueerende artikels oor die teoretiese of terapeutiese aspekte van spreak-, stem-, gehoor- of taalafwykings, of oor aspekte van die prosesse onderliggend aan hierdie afwykings.

Die Suid-Afrikaanse Tydskrif vir Kommunikeaafwykings sal nie materiaal aanvaar wat reeds elders gepubliseer is, of wat tans deur ander publikasies oorweeg word nie.

Alle bydraes word deur minstens twee konsultante nagestrek. Vir die aanvaarde afwykings sal niets van belang geskryf of gepubliseer word nie. Verskyn, genommer word (met Arabiese syfers). Die hoeveelheid materiaal in die vorm van tabelle en illustrasies wat toegelaat word, sal bepaal (gewoonlik nie meer as 6 nie).

All contributions are reviewed by at least two consultants who are not provided with author identification.

Table and Figures should be prepared on separate sheets (one per table/figure). Figures, graphs and line drawings must be originals, in black ink on good quality white paper. Lettering appearing on these should be uniform and professionally done, bearing in mind that such lettering should be legible after a 50% reduction in printing. On no account should lettering be typewritten on the illustration. Any explanation or legend should not be included in the illustration but should appear below it. The titles of tables and figures should be concise but explanatory. The title of tables appears above, and of figures below. Tables and figures should be numbered in order of appearance (with Arabic numerals). The amount of tabular and illustrative material allowed will be at the discretion of the Editor (usually not more than 6).

References. References should be cited in the text by surname of the author and date, e.g. Van Riper (1971). Where there are more than two authors, et al. after the first author will suffice. The names of all authors should appear in the Reference List. References should be listed alphabetically in triple-spacing at the end of the article. For acceptable abbreviations of names of journals, consult the fourth issue (October) of DSH ABSTRACTS or The World List of Scientific Periodicals. The number of references used should not exceed much more than 20.

Note the following examples:

Proofs. Galley proofs will be sent to the author wherever possible. Corrections other than typographical errors will be charged to the author.

Reprints. 10 reprints without covers will be provided free of charge. All manuscripts and correspondence should be addressed to:
The Editor, South African Journal of Communication Disorders, South African Speech and Hearing Association, P.O. Box 31782, Braamfontein 2017, South Africa.

All manuscripts and correspondence should be addressed to:

The Editor, South African Journal of Communication Disorders, South African Speech and Hearing Association, P.O. Box 31782, Braamfontein 2017, South Africa.

The South African Journal of Communication Disorders publishes reports and papers concerned with research, or critically evaluative theoretical, or therapeutic issues dealing with disorders of speech, voice, hearing or language, or on aspects of the processes underlying these.

The South African Journal of Communication Disorders will not accept material which has been published elsewhere or that is currently under review by other publications.

All contributions are reviewed by at least two consultants who are not provided with author identification.

Form of Manuscript. Authors should submit four neatly typewritten manuscripts in triple spacing with wide margins which should not exceed much more than 25 pages. Each page should be numbered.

The first page of two copies should contain the title of the article, name of author/s, highest degree and address or institutional affiliation. The first page of the remaining two copies should contain only the title of the article. The second page of all copies should contain only an abstract (100 words) which should be provided in both English and Afrikaans. Afrikaans abstracts will be provided for overseas contributors. All paragraphs should start at the left margin and not be indented.

Major headings, where applicable, should be in the order of METHOD, RESULTS, DISCUSSION, CONCLUSION, ACKNOWLEDGEMENTS and REFERENCES.

Tables and Figures should be prepared on separate sheets (one per table/figure). Figures, graphs and line drawings must be originals, in black ink on good quality white paper. Lettering appearing on these should be uniform and professionally done, bearing in mind that such lettering should be legible after a 50% reduction in printing. On no account should lettering be typewritten on the illustration. Any explanation or legend should not be included in the illustration but should appear below it. The titles of tables and figures should be concise but explanatory. The title of tables appears above, and of figures below. Tables and figures should be numbered in order of appearance (with Arabic numerals). The amount of tabular and illustrative material allowed will be at the discretion of the Editor (usually not more than 6).

References. References should be cited in the text by surname of the author and date, e.g. Van Riper (1971). Where there are more than two authors, et al. after the first author will suffice. The names of all authors should appear in the Reference List. References should be listed alphabetically in triple-spacing at the end of the article. For acceptable abbreviations of names of journals, consult the fourth issue (October) of DSH ABSTRACTS or The World List of Scientific Periodicals. The number of references used should not exceed much more than 20.

Note the following examples:

Proofs. Galley proofs will be sent to the author wherever possible. Corrections other than typographical errors will be charged to the author.

Reprints. 10 reprints without covers will be provided free of charge. All manuscripts and correspondence should be addressed to:

The Editor, South African Journal of Communication Disorders, South African Speech and Hearing Association, P.O. Box 31782, Braamfontein 2017, South Africa.

All contributions are reviewed by at least two consultants who are not provided with author identification.

Form of Manuscript. Authors should submit four neatly typewritten manuscripts in triple spacing with wide margins which should not exceed much more than 25 pages. Each page should be numbered.

The first page of two copies should contain the title of the article, name of author/s, highest degree and address or institutional affiliation. The first page of the remaining two copies should contain only the title of the article. The second page of all copies should contain only an abstract (100 words) which should be provided in both English and Afrikaans. Afrikaans abstracts will be provided for overseas contributors. All paragraphs should start at the left margin and not be indented.

Major headings, where applicable, should be in the order of METHOD, RESULTS, DISCUSSION, CONCLUSION, ACKNOWLEDGEMENTS and REFERENCES.

Tables and Figures should be prepared on separate sheets (one per table/figure). Figures, graphs and line drawings must be originals, in black ink on good quality white paper. Lettering appearing on these should be uniform and professionally done, bearing in mind that such lettering should be legible after a 50% reduction in printing. On no account should lettering be typewritten on the illustration. Any explanation or legend should not be included in the illustration but should appear below it. The titles of tables and figures should be concise but explanatory. The title of tables appears above, and of figures below. Tables and figures should be numbered in order of appearance (with Arabic numerals). The amount of tabular and illustrative material allowed will be at the discretion of the Editor (usually not more than 6).

References. References should be cited in the text by surname of the author and date, e.g. Van Riper (1971). Where there are more than two authors, et al. after the first author will suffice. The names of all authors should appear in the Reference List. References should be listed alphabetically in triple-spacing at the end of the article. For acceptable abbreviations of names of journals, consult the fourth issue (October) of DSH ABSTRACTS or The World List of Scientific Periodicals. The number of references used should not exceed much more than 20.

Note the following examples:

Proofs. Galley proofs will be sent to the author wherever possible. Corrections other than typographical errors will be charged to the author.

Reprints. 10 reprints without covers will be provided free of charge. All manuscripts and correspondence should be addressed to:

The Editor, South African Journal of Communication Disorders, South African Speech and Hearing Association, P.O. Box 31782, Braamfontein 2017, South Africa.