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ABSTRACT 

Normal  and  impaired  pure tone thresholds  (PTTs)  were predicted  from  distortion  product  otoacoustic emissions (DPOAEs) 
using a feed-forward  artificial  neural network  (ANN)  with a back-propagation  training  algorithm.  The  ANN  used  a map of 
present and  absent DPOAEs from  eight DP grams, (2fl  -f2  = 406 - 4031 Hz)  to predict  PTTs  at 0.5, 1,2 and  4 kHz.  With 
normal hearing as < 25 dB  HL,  prediction  accuracy of  normal hearing was 94% at 500, 88% at 1000, 88% at 2000 and 
93% at 4000 Hz.  Prediction  of  hearing-impaired  categories  was less accurate, due  to insufficient  data  for  the ANN  to train 
on. This  research indicates  the possibility of  accurately  predicting  hearing ability within 10 dB  in normal hearing 
individuals  and  in hearing-impaired  listeners  with DPOAEs and  ANNsfrom  500 - 4000 Hz. 

Key Words: Otoacoustic emissions, Distortion product otoacoustic emissions, Artificial  neural networks, Hearing threshold 
prediction, Objective hearing assessment. 

INTRODUCTION 

David Kemp (1978) first  described otoacoustic 
emissions (OAE) from  the human ear and ignited 
tremendous interest in measurements of  these emissions 
to develop another objective diagnostic test of  hearing. 
Distortion product otoacoustic emissions (DPOAEs) are 
relatively easy measurable sinusoids, recordable in the 
occluded ear canal during the simultaneous stimulation of 
two primary pure tone frequencies,  fl  and f2  with f2  > fl. 
The current view on DPOAE generation is that these 
active responses from  the cochlea have two main sources 
of  energy (Knight & Kemp, 1999; Mauermann, 
Uppenkamp, Van Hengel, & Kollmeier, 1999a; 
Mauermann, Uppenkamp, Van Hengel, & Kollmeier, 
1999b; Talmadge, Long, Tubis, & Dhar, 1998). The first 
primary source of  DPOAE energy is the result of 
nonlinear interaction between the two primary 
frequencies  on the basilar membrane at the f2  place, also 
referred  to as the generation site. The second source of 
DPOAE energy is caused by the reflection  of  the 
coherent waves at the 2fl  - f2  frequency  place, also 
referred  to as the re-emission site. The measured DPOAE 
in the ear canal is the result of  the interference  of  both 
these sources. It has also recently been postulated that 
there are two mechanisms responsible for  DPOAE 
generation: 

DPOAEs consist of  a mixture of  nonlinear 
energy arising from  two locations on the basilar 
membrane as well as linear coherent reflection  off  pre-
existing micromechanical impedance pertubations 
(Kalluri & Shera, 2001). 

The correlation between DPOAEs and hearing 
sensitivity has kept many researchers occupied in the last 
two decades (Bonfils,  Avan, Londero, Trotoux, & Narcy, 
1991; Harris & Probst, 1991; Kimberley & Nelson, 1989; 
Kummer, Janssen, & Arnold, 1998; Martin, Ohlms, 
Franklin, Harris, & Lonsbury-Martin, 1990; Nieschalk, 

Hustert, & Stoll, 1998; Probst & Hauser, 1990; 
Smurzynski, Leonard, Kim, Lafreniere,  Marjorie, & Jung, 
1990). The quest to predict pure tone thresholds (PTTs) 
accurately with DPOAEs arises not from  the need to 
replace existing conventional behavioral evaluation 
procedures, but to aid in the assessment of  pure tone 
sensitivity in difficult-to-test  populations such as 
neonates, infants,.  malingerers and the critically ill. To 
determine PTTs in special populations with objective 
physiologic measurements such as tympanometry, the 
acoustic reflex,  ABR and OAEs, procedures are often 
costly, require a large amount of  time (Northern, 1991), 
highly trained and specialized personnel and sometimes 
involve sedation (Musiek, Berenstein, Hall III, & 
Schwaber, 1994). Above all, current objective procedures 
such as ABR, have a limited frequency  area in which 
hearing sensitivity can be determined accurately (Weber, 
1994). There is therefore  a definite  need for  .an objective, 
reliable, rapid and economic test of  hearing that evaluates 
hearing sensitivity across a wide range of  frequencies  to 
aid in the assessment of  difficult-to-test  populations. 

The main aims of  most previous studies were 
attempts to categorize PTTs with DPOAEs as normal or 
impaired (Hurley & Musiek, 1994; Kimberley, 
Kimberley, & Roth, 1994a; Kimberley, Hernadi, Lee, & 
Brown, 1994b) or to gain more information  regarding the 
site-of-lesion  in diagnostic audiology (Moulin, Bera, & 
Collet, 1994; Ohlms, Lonsbury-Martin, & Martin, 1990; 
Robinette, 1992; Tanaka, O-Uchi, Arai, & Suzuki, 1987). 
Most researchers, however, found  it extremely difficult 
or even impossible to predict impaired PTTs or to 
categorize hearing sensitivity at low frequencies  as 
normal or impaired with DPOAEs (Gorga, Neely, 
Bergman, & Beauchaine, 1993; kimberley et al., 1994b; 
Stover, Gorga, & Neely, 1996; Zhao & Stephens, 1998). 
This unsatisfactory  prediction of  PTTs with DPOAEs is 
probably due to thelarge number of  DPOAE stimulus 
parameters that influence  optimal measurement (Bonfils 
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et al., 1991; Gorga, et al., 1993), the complex non-linear 
nature of  the measured responses (Kummer et al., 1998; 
Nakajima, Mountain, & Hubbard, 1998) and the inability 
of  conventional statistics to address this problem 
sufficiently  (Kimberley et al., 1994a). 

Some of  the previous studies that attempted to 
classify  hearing sensitivity with DPOAEs as normal or 
impaired will be reviewed shortly. Kimberley and Nelson 
(1989) determined the correlation between DPOAE 
threshold and PTTs in 21 ears (11 normal, 10 with a 
degree of  sensorineural hearing loss) using an f2/fl  ratio 
of  1.2 and measuring DPOAE input-output (I/O) 
functions  from  30 - 80dB SPL in .6dB steps. They 
claimed that DPOAE thresholds predicted PTTs within 
lOdB over a range of  sensory thresholds from  0 - 60dB 
SPL for  the frequencies  700- 6000 Hz. This was the first 
report of  such an accurate prediction. Kimberley et al. 
(1994b) predicted hearing status in normal and hearing-
impaired ears with DPOAEs at six frequencies  ranging 
from  1025 - 5712 Hz. The significance  of  variables such 
as DPOAE levels, age and gender were determined in the 
definition  of  normal versus abnormal PTTs and then 
applied to a new set of  unfamiliar  data to determine their 
predictive accuracy at each frequency.  Classification 
accuracy of  normal hearing varied from  71% at 1025 to 
92% at 2050 Hz. Kimberley et al. (1994a) used an 
artificial  neural network (ANN) approach to predict PTTs 
with DPOAEs and prediction accuracy varied from  57% 
correct classification  of  hearing impairment at 1025Hz to 
100% at 2050Hz when normal hearing was defined  as 
PTTs < 20dB HL. Overall classification  accuracy was 
80% for  normal PTTs and 90% for  impaired PTTs. Gorga 
et al. (1993) also measured the extent to which DPOAEs 
could accurately distinguish between normal-hearing and 
hearing-impaired ears. DPOAE levels at 65/55 dB SPL 
distinguished between normal and impaired subjects at 
4000, 8000 and to a lesser extent at 2000 Hz. At 500 Hz, 
performance  was no better than chance due to high 
biological noise levels such as breathing and swallowing. 

/ Moulin et al. (1994) categorized hearing as normal or 
impaired (below or above 25 dB HL) by comparing the 
DPOAE threshold with jthe PTT of  the frequency  that 
corresponded with the geometric mean of  the primaries. 
Correct classification  was 79.4% at 4000, 81.5% at 2826, 
75.6% at 1413, 73.2% at 1000 and 52.9% at 706 Hz. 
False negative responses ranged from  11.9% to 16.6%. 

From various reports it became clear that there 
are numerous DPOAE and demographic features  that 
influence  predictive accuracy of  PTTs (Avan & Bonfils, 
1993; Gaskill & Brown, 1990; Kimberley et al., 1994b, 
Mills, 1997; Moulin et al., 1994; Stover et al., 1996). 
Features mentioned in these studies include the DPOAE 
amplitude versus threshold correlation with PTTs, PTT 
frequency  correlation to the frequency  of  fl,  f2,  2fl  - f2 
or the geometric mean of  the primaries, the level of 
stimuli to evoke DPOAEs and possible incorporation of 
DPOAE amplitudes of  adjacent frequencies. 

Moulin et al. (1994) reported that DPOAE 
threshold, rather than DPOAE amplitude, seemed to be 
the best parameter in predicting PTTs. Stover et al. 
(1996) argued that while DPOAE threshold offered  a 
slightly better prediction of  PTTs than DPOAE amplitude, 
it lengthened test times due to difficulty  of  threshold 
determination against a noisy background and therefore 
reduced clinical utility as a tool for  identification  of 
Die Suid-Afrikaanse  Tydskrifvir  Kommunikasieafwykings,  Vol.  4 

hearing loss. Stover et al. (1996) and Kimberley et al. 
(1994b) observed that the single most important variable 
to categorize PTTs as normal or impaired was the 
DPOAE amplitude in response to moderate level 
primaries (LI at 55 or 60 dB SPL) with f2  frequencies 
close to the PTT frequency.  Mauermann et al. (1999b) 
found  that the DPOAE fine  structure (fine  structure has 
been defined  by Talmadge et al., 1998, as quasiperiodic 
variations in DPOAE amplitude and phase with 
variations in DPOAE frequency)  might be a more 
sensitive indicator of  hearing impairment than DPOAE 
amplitude alone. In cases where the primary frequencies 
fell  in areas of  normal hearing but the DPOAE 
frequency's  corresponding PTT was impaired, the 2fl-f2 
DPOAE was still measurable but the fine  structure 
disappeared. 

When it comes to the analysis of  DPOAE data, 
there are different  frequency  variables of  the DPOAE to 
use for  the prediction of  PTTs. Possibilities include the 
2fl  - f2  frequency,  fl,  f2  or the geometric mean of  the 
primaries. Some researchers correlated the geometric 
mean frequency  of  the primaries with the PTT frequency 
(Bonfils  et al., 1991; Lonsbury-Martin & Martin, 1990; 
Martin et al., 1990). Others found  that DPOAE 
amplitudes of  frequencies  at and adjacent to the f2 
frequency  were most predictive of  normal hearing 
sensitivity (Harris, Lonsbury-Martin, Stagner, Coats, & 
Martin, 1989; Kimberley et al., 1994a; Kimberley et al., 
1994b; Kummer et al., 1998). Recent studies proved that 
the region close to the f2  place on the basilar membrane 
is the primary source of  DPOAE energy and therefore  the 
f2  frequency  is currently the preferred  frequency  to 
correlate with pure tone thresholds. (Mauermann et al., 
1999a; Mauermann et al., 1999b; Talmadge et al., 1998). 

Regarding the level of  the stimuli to use in 
measuring DPOAEs for  PTT prediction purposes, most 
researchers agree that moderate and lower level stimuli 
(below 65 dB SPL) are more suitable for  PTT prediction 
and that lower levels are more frequency  specific  (Avan 
& Bonfils,  1993; Gaskill & Brown, 1990; Kimberley et 
al., 1994b, Mills, 1997). According to Bonfils  et al. 
(1991), when primary intensities higher than 60 dB SPL 
are used for  stimulus generation, it is probable that only 
passive properties of  the cochlea contribute to the 
emission and that it might not indicate true outer hair cell 
functioning.  It has recently been postulated by Kalluri 
and Shera (2001) that as there are two mechanisms in the 
generation of  DPOAEs, passive linear components may 
be present in even a low level DPOAE. 

Age was one demographic variable that had a 
great influence  on prediction accuracy of  PTTs with 
DPOAEs (Kimberley et al., 1994a; Kimberley et al., 
1994b; Lonsbury-Martin et al., 1990). Although many 
studies indicated that the negative correlation between 
DPOAE levels and age was due to changes in hearing 
sensitivity associated with aging, rather than age itself 
(Avan & Bonfils,  1993; He & Schmiedt, 1996; Karzon, 
Garcia, Peterein, & Gates, 1994; Nieschalk et al., 1998), 
researchers attempting to predict PTTs with DPOAEs 
suggested the inclusion of  the age variable in the 
prediction scheme for  more accurate predictions (De 
Waal, 1998; De Waal, 2000; Kimberley et al., 1994a; 
Kimberley et al., 1994b; Lonsbury- Martin, Cutler, & 
Martin, 1991). 
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Most studies that attempted to predict PTTs with 
DPOAEs used statistical methods such as multivariate 
discriminant analysis (Kimberley et al., 1994b), relative 
operating characteristic curves (Gorga et al., 1993), or 
routine statistical tests such as j2 , Student's t test, 
matched t tests and Pearson's correlation coefficients 
(Moulin et al.,. 1994). A study by Dorn, Piskorski, Gorga, 
Neely, & Keefe  (1999) compared single-variable and 
multivariate statistical approaches in PTT prediction with 
DPOAEs and concluded that superior performance  and 
greater predictive accuracy were obtained with 
multivariate techniques. 

Kimberley et al. (1994a) used a different  data 
processing technique called artificial  neural networks 
(ANNs) for  the prediction of  PTTs with DPOAEs. This 
experiment compared the classification  performance  of 
ANNs with discriminant analysis and found  that ANNs 
outperformed  the more traditional statistical technique in 
the hearing-impaired cases. This was probably because of 
this algorithm's superior ability to model complex 
problems, determine nonlinear correlations and excellent 
predicting abilities (Blum, 1992; Rao & Rao, 1995). 
Blum (1992) identified  three advantages of  neural 
networks over conventional statistical methods that can 
be applied in the prediction of  PTTs with DPOAEs: a) 
ANNs require less need to determine relevant factors  a 
priori. Irrelevant data has such a low connection strength 
it has no effect  on the outcome and the ANN determines 
which factors  are relevant, b) The sophistication of  the 
ANN model allows it to take hundreds of  factors  into 
account simultaneously and this directness of  the model 
enables it to solve complex problems in much less time, c) 
ANNs are extremely fault  tolerant and can learn on noisy 
or incomplete data, which is often  the case with absent or 
noisy DPOAEs. 

Kimberley et al. (1994a) categorized hearing as 
normal or impaired (normal was defined  as less than 
20dB HL) with DPOAEs and ANNs but made no attempt 
to categorize the magnitude of  the hearing loss by 
performing  any further  predictions. 

The aim for  this study was to investigate if 
ANNs could categorize PTTs into different  groups of 
hearing sensitivity, not by only distinguishing between 
normal and impaired, but to categorize impaired PTTs 

into lOdB groups. ANNs were used to determine a 
correlation between selected measured variables of 
DPOAEs and PTTs and to apply the correlation to make 
a prediction. The measured variables included DPOAEs 
at eleven 2fl  - f2  frequencies  ranging from  2f  1 - f2  = 406 
to 4031 Hz and PTT information  at 0.5, 1, 2 and 4kHz. 
Controlled variables included the frequencies  of  the 
primaries, ranging from  fl  = 500 - 5031 Hz with a fixed 
f2/fl  ratio of  1.2 and the levels of  LI and L2 ranging 
from  L2 = 60 - 25 dB, LI >. L2 by 10 dB. There was 
experimentation with certain manipulated variables to 
determine their effect  on PTT prediction accuracy. 
Manipulated variables included experimentation with 
DPOAE amplitude representation into the ANN: either as 
a categorical value (with the dummy variable technique, 
explained in data preparation) or as a fraction  of  the 
maximum amplitude value. Subject age was included in 
the ANN as a categorical value with the dummy variable 
technique and there was experimentation with age 
representation in 5- or 10-year categories. The subject 
variable, gender, was always included in the ANN and 
was depicted with a one or a zero. Other manipulated 
variables included ANN topology experimentation with 
middle level neuron quantities (80, 100 and 120) and 
error tolerance levels (0.1%, 0.2% and 0.3%). Middle 
level neuron quantities were doubled for  experiments 
where amplitude was presented as a categorical value 
(referred  to as ALT AMP) to balance the increase in inset 
neurons, as suggested by Rao and Rao (1995). 

There is one major difference  between this study 
and most other studies predicting PTTs with DPOAEs 
that should be clearly stated: This experiment did not use 
the single f2  value corresponding to the PTT frequency, 
but used the present and absent responses for  all 11 f2 
frequencies  as ANN input in the prediction of  each PTT 
frequency.  The use of  frequencies  other than the single 
closest corresponding f2  frequency  is not a new idea: 
Kimberley et al. (1994a) used amplitudes of  DPOAE 
frequencies  adjacent to the f2  frequency  to correlate to 
the PTT frequency  and found  that it improved PTT 
prediction. Experimentation with the use of  the whole 
spectrum of  DPOAE information  to predict a single PTT 
was attempted to enhance prediction abilities of  low 
frequencies,  especially 500 Hz, which has proven 

Table 1: Distribution pattern for  different  types of  hearing loss in the 120 ear data set. 

Ears Group 1: 
PTAs 0-15 dB HL 

Ears Group 2: 
PTAs 16-35 dB HL 

Ears Group 3: 
PTAs 36- 65dB HL 

Flat audiogram 
Not more than 20dB variation between 

0.5 - 4 kHz. 
40 11 16 

Gradual slope 
PTTs increased gradually as frequency 

increased 
0 9 24 

Ski-slope 
Flat configuration  up to 2 kHz with >20dB 

PTT drop in high frequencies 
0 10 1 .· 

Low frequency  loss 
0.5 - 1 kHz more impaired than 2 - 4 kHz 2 0 0 

Notch 
Notch shaped loss around 1 - 3 kHz 4 3 0 
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difficult  or impossible for  many other researchers 
(Durrant, 1992; Gorga et al., 1993; Moulin et al., 1994; 
Probst & Hausser, 1990; Stover et al., 1996). 

M E T H O D 

Subject 
Data was obtained from  70 subjects (120 ears, in 

some cases only one ear fell  within subject selection 
specifications),  28 males and 42 females  ranging from  8 
to 82 years old. Subjects were divided into three groups. 
The first  group represented ears with normal hearing and 
had pure tone averages (PTAs) of  0 to 15 dB HL. For the 
determination of  PTAs, 500, 1000, 2000 and 4000 Hz 
were taken in consideration. Four thousand Hertz was 
also included since it was one of  the frequencies  to be 
predicted. The second group represented mild hearing 
loss and had PTAs between 16 and 35 dB HL and the 
third group represented moderate hearing loss with PTAs 
between 36 and 65 dB HL. There were 46 ears in the first 
group, 33 in the second and 41 in the third group. The 
patterns of  hearing loss of  this population are presented 
in Table 1. Age and gender distribution of  subjects can be 
seen in Figure 1. 

Sampling 
Subjects were drawn from  a private practice in 

Audiology, the clinic at the University of  Pretoria, and a 
school for  the hard of  hearing. The main aims of  the 
study and the procedure for  obtaining data were 
described and subjects were asked if  they would be 
willing to participate. 

Subject  selection  criteria 
The selection criterion was normal middle ear 

functioning.  Subjects demonstrating type A 
tympanograms with static immittance between 0.3 to 1.6 
mmhos (measured at 226 Hz) and a peak (or point of 
maximum admittance) between -100 daPa to 25 daPa 
were accepted for  this study. 

There was no selection criterion regarding age 
or gender. Only the pediatric population was excluded 
from  this study due to differences  in middle ear 
properties such as canal length, canal volume and middle 
ear reverse transmission efficiency  that may have caused 
differences  in DPOAE amplitudes (Lee, Kimberley, & 
Brown, 1993). 

Subject  selection  procedure 
If  a subject agreed to participate in the study, a 

brief  interview obtained limited background information 
such as subject name, gender and date of  birth, 
information  regarding hearing status and family  history 
of  hearing loss, history of  middle ear problems, noise 
exposure, tinnitus or vertigo and medications currently 
used. The interview was followed  by otoscopic 
examination, tympanometry and pure tone audiometry. 
Pure tone audiometry was performed  in a sound proof 
booth on a GSI 60 audiometer. When PTTs exceeded 10 
dB HL, pure tone bone conduction was also performed. 
Threshold determination was in 5 dB steps and a 
threshold was defined  as the lowest hearing level with a 
minimum of  two out of  three responses at the specified 
dB level (Yantis, 1994). If  a subject met the subject 
selection criteria, DPOAE measurements followed  in a 
quiet room. The GSI 60 audiometer and GSI 28-A 
tympanometer met calibration requirements and the 
DPOAE probes were calibrated for  the quiet room in 
which testing was performed. 

Specification  of  dpoae 
stimulus  parameters 

The frequency 
range evaluated spanned 
from  fl  = 500 to 5031 Hz 
with a f2/fl  ratio of  1.2. 
Three data points per 
octave were selected as per 
the Grason-Stadler Inc. 
DPOAE user manual 
(1997) for  Model GSI-60, 
resulting in 11 primary 
frequency  pairs. 

In the present 
study, eight DPgrams were 
obtained for  each ear. All 
11 frequency  pairs were 
presented to the subjects at 
different  levels, starting 
with maximum levels at 
LI = 70 dB; L2 = 60 dB. 
Levels were decreased in 5 
dB steps. LI > L2 by 10 
dB for  every DPgram. The 
lowest level for  the 
primaries tested was LI = 
35 dB; L2 = 25 dB. 

25 
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I J I 
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Figure 1: Age and gender representation of  subjects in 10-year categories. 
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Figure 2: An Artificial  neuron 

Input level: Neurons 1-109: 88 
for  DPOAEs from  11 DPgrams 
and eight intensities, +20 for 
representing age in 5 year 
categories +1 for  gender. 

Middle level: 
(Certain experiments had 80 
middle neurons, others 100 
or 120). 

Output level: Output neurons 
1-8. Representing a PTT 
prediction into one of  eight 
10 dB categories. 

Figure 3: Schematic representation of  a three-layered feed-forward  artificial  neural network 
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DATA PREPARATION AND PROCESSING 

For this experiment, a commercially available 
feed-forward  ANN with a back propagation training 
algorithm and one hidden layer was used, from  Rao and 
Rao, (1995). 

An artificial  neural network is a computer 
program that consists of  computational units, referred  to 
as neurons. Neurons receive inputs analogous to the 
impulses that the dendrites of  biological neurons receive, 
each input with its own mathematical value, or weight, 
indicating the importance of  the input. The neuron 
calculates a total for  all inputs, compares it to a threshold 
value and produces an output, just like a . biological 
neuron sends an output through its axon. A schematic 
representation of  an artificial  neuron can be seen in 
Figure 2. Several neurons are combined to form  • an 
artificial  neural network. A schematic representation of 
the three-layered type feed-forward  network used in this 
study can be seen in Figure 3. 

ANNs have two phases of  operation, a training 
phase and a predicting phase. During training, the ANN 
assigns a weight (mathematical value) to every input it 
receives, and this weight affects  the importance or impact 
of  that input (Blum, 1992; Nelson & Illingworth, 1991). 
It is through repeated adjustments to the weights that the 
network learns. At first,  weights are assigned at random. 
The ANN computes the output, compares it with the 
desired answer, and adjusts the weights repeatedly until 
the desired answers can be predicted for  all the cases in 
the training set (Medsker, Turban, & Trippi, 1993). When 
prediction error for  the training set is zero or acceptably 
low, the weights are frozen  and the network is then 
presented with unfamiliar  data to make' a prediction based 
on the learned correlation (Rao & Rao, 1995). The 
topology of  the network, such as the number of  neurons 
in the hidden layer, error tolerance and learning rates 
were determined by experimentation but was not the 
result of  an exhaustive search, so the possibility exists 
that different  topologies might yield better results. In this 
study, there was experimentation with the number of 
hidden layer neurons asj 80, 100 and 120 for  all 
experiments except where amplitude was represented 
with the dummy variable technique as a categorical value 
(referred  to as the ALT AMP technique). ALT AMP 
created much more inset neurons and the middle level 
neurons were doubled to compensate for  additional 
neural network complexity. Acceptable error during 
training was 0.001, 0.002 and 0.003 (within 0.01%, 
0.02% and 0.03% accurate). The Beta value or learning 
rate parameter was 0.5. 

To prepare the DPOAE data for  ANN training, 
all DPOAE responses from  the eight DPgrams were 
rewritten in a binary fashion  by using the dummy 
variable technique (Licht, 1998). Data .was transformed 
into dichotomous variables indicating the presence or 
absence of  a specific  category. Absent DPOAE responses 
were depicted with a zero and present responses with a 
one. The pattern of  all present and absent responses of 
the eight DPgrams served as input stimuli for  the ANN. 
The ANN was presented with 88 input stimuli depicting 
DPOAE information  of  each ear (the eight DPgrams had 
11 frequencies  each, resulting in 88 possible DPOAE 
responses). 'The age variable was depicted in the same 
binary fashion  as input into the ANN by indicating the 5 
Die Suid-Afrikaanse  Tydskrif  vir Kommunikasieafwykings,  Vol.  49, 2002 

or 10-year category with ones and zeros: For example in 
the case of  the 10-year category experiment, a 12-year 
old subject was depicted with a one in the second 10-year 
category and the other categories with zeros (01000000), 
an 82-year old subject as (00000001). Gender was 
depicted with a one or a zero. The amplitude of  the 
DPOAE was either depicted as a fraction  -of  the 
maximum DPOAE amplitude (40dB) measured in the 
study (referred  to as AMP 40), a fraction  of  100 (referred 
to as AMP 100) or by using the dummy variable 
technique by depicting it as a categorical value in one of 
four  lOdB categories (referred  to as ALT AMP). 

For ANN training, DPOAE responses and PTTs 
of  118 ears were used to learn the correlation between 
DPOAEs and PTTs. Both ears of  a subject were left  out 
for  each training phase. (The procedure was repeated for 
every subject, there were therefore  120 training phases.) 
In the prediction phase, the ANN was presented with 
only one of  the DPOAEs of  the two remaining 
"unfamiliar"  ears. The ANN then predicted that ear's PTT 
based on the learned correlation of  the training phase. 
This process was also repeated 120 times, to predict each 
ear once. The output of  the ANN was a prediction of  pure 
tone sensitivity at a specific  frequency.  This prediction 
however, was not in decibel form,  but a categorization of 
hearing ability into eight lOdB categories. 

Data analysis consisted of  analyzing the actual 
and predicted values of  all 120 ears and to determine how 
many were predicted accurately within the lOdB category, 
how many were predicted in an adjacent lOdB category 
and how many were predicted into a category more than 
20dB out. 

RESULTS 

Tables 2 to 5 summarize results for  the best 
neural network experiments predicting 500, 1000, 2000 
and 4000 Hz. The tables present results in two categories: 
Correct predictions are classified  as within the same 
lOdB category, one category out represents predictions 
made into an adjacent lOdB category. Remaining results 
were predicted more than one lOdB category out. Results 
are given for  each lOdB category as well as overall ANN 
performance  to predict normal hearing. The abbreviations 
for  manipulated variables to outline the design of  the 
specific  experiment are explained in the key following 
each table. 

PREDICTION OF NORMAL HEARING 

The prediction of  500 Hz with DPOAEs has 
been problematic for  many researchers due to the rising 
noise floor  below 1000 Hz (Durrant, 1992; Gorga, et al., 
1993; Stover et al., 1996). It seems that even normal and 
near normal ears exhibit no or small DPOAE amplitudes 
at 500 Hz (Probst & Hauser, 1990). In this study, normal 
hearing (<25 dB HL) at 500 Hz could be predicted with 
94% accuracy. Normal hearing at 1000 Hz was predicted 
with 88% accuracy, 2000 Hz with 88% accuracy and 
4000 Hz with 93% accuracy. The mean false  positive rate 
for  this study was 4% and the mean false  negative rate 
was 16%. The false  negative rate indicating the 
sensitivity of  the procedure was still unacceptably high 
for  diagnostic purposes (Brass & Kemp, 1994) even 
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Predicting Hearing Loss from  Otoacoustic Emissions Using an Artificial  Neural Network 

Table 2: Prediction of  500 Hz with Al = 5, NoLF, Mid = 240, Err = 0.002, ALT AMP ** 

34 

Catego-ries 1 
. (0 + 

5dB) 

2 
(10 

+15dB) 

3 
(20+25dB) 

4 
(30+35dB) 

5 
(40+45dB) 

6 
(50+55dB) 

7 
(60+65dB) 

8 
(70+75dB) 

% Correct 80.9 9.7 0.0 . 16.7 22.2 0.0 0.0 * 

% 
lOdB out 

14.3 80.6 62.5 8.3 0.0 14.3 0.0 * 

% False positive responses 
(0 - 25dBHL predicted as > 25 dBHL per category) 

% False negative responses 
(> 25 dBHL predicted, as 0 - 25dBHL per category) • 

0.0 2.0 . 1.0 6.0 5.0 4.0 0.0 * 

ears in 
category 

42 31 16 12 9 7 3. * 

Overall prediction 
accuracy >L 

**Key 
Al = 5 —»Age increment presented to ANN in 5-year categories 
NoLF No low frequency  DPOAEs (<1000 Hz) included in ANN 
ALT AMP—> Amplitude of  DPOAE presented as categorical value with dummy variable . 
technique 
Mid = 240—» Number of  middle level neurons in ANN topology 
Err = 0.002 —> Error tolerance of  ANN within 0.02% accurate 

0-15dB 
predicted as 
0-15dB 

75% 

**Key 
Al = 5 —»Age increment presented to ANN in 5-year categories 
NoLF No low frequency  DPOAEs (<1000 Hz) included in ANN 
ALT AMP—> Amplitude of  DPOAE presented as categorical value with dummy variable . 
technique 
Mid = 240—» Number of  middle level neurons in ANN topology 
Err = 0.002 —> Error tolerance of  ANN within 0.02% accurate 

0-15dB 
predicted as 
0-25dB 

.. 95% 

**Key 
Al = 5 —»Age increment presented to ANN in 5-year categories 
NoLF No low frequency  DPOAEs (<1000 Hz) included in ANN 
ALT AMP—> Amplitude of  DPOAE presented as categorical value with dummy variable . 
technique 
Mid = 240—» Number of  middle level neurons in ANN topology 
Err = 0.002 —> Error tolerance of  ANN within 0.02% accurate 

0-25dB 
predicted as 
0-25dB 

94% 

**Key 
Al = 5 —»Age increment presented to ANN in 5-year categories 
NoLF No low frequency  DPOAEs (<1000 Hz) included in ANN 
ALT AMP—> Amplitude of  DPOAE presented as categorical value with dummy variable . 
technique 
Mid = 240—» Number of  middle level neurons in ANN topology 
Err = 0.002 —> Error tolerance of  ANN within 0.02% accurate 

* There were no ears in category eight, largest hearing loss measured for  500 Hz was 65dB HL. 

Table 3: Prediction of  1000 Hz with Al = 5, LF pres, Mid = 200, Err = 0.003, ALT AMP ** 

Catego-ries 1 
(0 + 
5dB) 

2 
(10 

+15dB) 

3 
(20+25dB) 

4 
(30+35dB) 

5 
(40+45dB) 

6 
(50+55dB) 

7 
(60+65dB) 

8 
(70+75dB) 

% Correct 80.0 24.1 33.3 0.0 20.0 0.0 18.2 * 

% 
lOdB out 

15.0 55.2 25.0 20.0 6.7 12.5 9.1 * 

% False positive responses 
(0 - 25dBHL predicted as > 25 dBHL per 

category) 

% False negative responses 
(> 25 dBHL predicted as 0 - 25dBHL per category) 

0.0 5.0 1.0 2.0 10.0 5.0 . 5.0 * 

ears in ' 
category 

40 29 12 5 ' 15 8 11 * 

Overall prediction 
accuracy >L 

**Key 

0-15dB 
predicted as 
0-15dB 

86% Al = 5 —» Age increment presented to ANN in 5-year categories . , 
LF pres —» Low frequency  DPOAEs (<1000 Hz) included in ANN ι 
ALT AMP—» Amplitude of  DPOAE presented as categorical value with dummy variable 
technique 
Mid = 200—»Number of  middle level neurons in ANN topology 
Err = 0.003 - t Error tolerance of  ANN within 0.03% accurate 

0-15dB 
predicted as 
0-25dB 

89% 

Al = 5 —» Age increment presented to ANN in 5-year categories . , 
LF pres —» Low frequency  DPOAEs (<1000 Hz) included in ANN ι 
ALT AMP—» Amplitude of  DPOAE presented as categorical value with dummy variable 
technique 
Mid = 200—»Number of  middle level neurons in ANN topology 
Err = 0.003 - t Error tolerance of  ANN within 0.03% accurate 

0-25dB 
predicted as 
0-25dB 

88% 

Al = 5 —» Age increment presented to ANN in 5-year categories . , 
LF pres —» Low frequency  DPOAEs (<1000 Hz) included in ANN ι 
ALT AMP—» Amplitude of  DPOAE presented as categorical value with dummy variable 
technique 
Mid = 200—»Number of  middle level neurons in ANN topology 
Err = 0.003 - t Error tolerance of  ANN within 0.03% accurate 

* There were no ears in category eight, largest hearing loss measured for  1000 Hz was 65dB HL. 

though it was lower than reported elsewhere (Gorga et al., 
1993; Kimberley et al., 1994b; Stover et al, 1996). 

Reasons for  the improved prediction of  normal 
hearing at low frequencies  involve a"' number of 
possibilities: First, it might be possible that the ANN 
found  significant  information  in the fine  structure of  the 
higher frequency  DPOAEs hidden in the pattern of  all 
present and absent responses of  the eight DPgrams to 
enable an accurate prediction at 500 Hz. Another 

possibility is the fact  that PTTs are heavily interrelated 
and with enough information  at the high frequencies,  it is 
possible for  the ANN to predict the low frequency  as one 
of  a limited number of  "audiogram pattern" or "DPOAE 
pattern" possibilities. It should be ̂ mentioned however, 
that this'neural network prediction at 500 Hz is not mere 
coincidence. Neural networks cannot do magic, a clear-
cut correlation is needed to enable an accurate prediction. 
Two unrelated data, sets will produce predictions that 
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Rouviere de Waal, Rene Hugo, Maggi Soer and Johann J Kruger 35 

approximate random noise. The ANN was therefore  able 
to extract enough information  from  the DPOAE spectrum 
to correctly classify  normal hearing at 500 Hz with 94% 
accuracy. 

PREDICTION OF HEARING LOSS 

Even though classification  of  hearing ability as 

normal or impaired as low as 500 Hz was surprisingly 
accurate, predictions of  categories representing hearing 
loss were disappointingly poor. Table 6 summarizes 
overall prediction accuracy across all eight lOdB 
categories for  all frequencies. 

Although prediction of  PTTs within a 10 dB 
category representing hearing loss was correct only up to 
32 % to 40% of  the time, prediction into an adjacent 

Table 4: Prediction of  2000 Hz with Al = 5,LF pres, Mid = 80, Err = 0.002, No AMP ** 

Catego-
ries 

1 
(0 + 
5dB) 

2 
(10 

+15dB) 

3 
(20+25dB) 

4 
(30+35dB) 

5 
(40+45dB) 

6 
(50+55dB) 

7 
(60+65dB) 

8 
(70+75dB) 

% Correct 7.8.1 41.4 0.0 0.0 0.0 6.3 . 7.7 * 

% 
lOdB out 

15.6 55.2 60.0 22.2 45.5 56.3 30.8 * 

% False positive responses 
(0 - 25dBHL predicted as > 25 dBHL per 

category) 

% False negative responses 
(> 25 dBHL predicted as 0 - 25dBHL per category) 

1.0 0.0 4.0 4.0 4.0 4.0 3.0 
ears in 
category 

32 29 10 9 11 16 13 * 

Overall prediction 
accuracy >L 

**Key 

0-15dB 
predicted 
as 0-15dB 

90% Al = 5 —» Age increment presented to ANN in 5-year categories 
LF pres —» Low frequency  DPOAEs (<1000 Hz) included in ANN 
No AMP—» Amplitude of  DPOAE omitted in ANN training 
Mid = 80—» Number of  middle level neurons in ANN topology 
Err = 0.002 Error tolerance of  ANN within 0.02% accurate 

0-15dB 
predicted 
as 0-25dB 

95% 

Al = 5 —» Age increment presented to ANN in 5-year categories 
LF pres —» Low frequency  DPOAEs (<1000 Hz) included in ANN 
No AMP—» Amplitude of  DPOAE omitted in ANN training 
Mid = 80—» Number of  middle level neurons in ANN topology 
Err = 0.002 Error tolerance of  ANN within 0.02% accurate 

0-25dB 
predicted 
as 0-25dB 

88% 

Al = 5 —» Age increment presented to ANN in 5-year categories 
LF pres —» Low frequency  DPOAEs (<1000 Hz) included in ANN 
No AMP—» Amplitude of  DPOAE omitted in ANN training 
Mid = 80—» Number of  middle level neurons in ANN topology 
Err = 0.002 Error tolerance of  ANN within 0.02% accurate 

* There were no ears in category eight, largest hearing loss measured for  2000 Hz was 65dB HL. 

Table 5: Prediction of  4000 Hz with Al = 5, LF pres, Mid = 80, Err = 0.002, No AMP** 
/ 

/ 

Catego-ries 1 
(0 + 
5dB) 

2 
(10 

' +15dB) 

3 
(20+25dB) 

4 
(30+35dB) 

5 
(40+45dB) 

6 
(50+55dB) 

7 
(60+65dB) 

8 
(70+75dB) 

% Correct 84.8 27.8 0.0 12.5 0.0 45.0 22.2 11.1 
% 

lOdB out 
15.2 61.1 57.1 0.0 28.6 30.0 33.3 44.4 

% False positive responses 
(0 - 25dBHL predicted as > 25 dBHL per 

category) 

% False negative responses 
(> 25 dBHL predicted as 0 - 25dBHL per category) 

0.0 1.0 1.0 3.0 2.0 2.0 5.0 1.0 
ears in 
category 

33 18 7 8 7 20 18 9 

Overall prediction 
accuracy >L 

**Key 

0-15dB 
predicted as 
0-15dB 

92% Al = 5 —¥ Age increment presented to ANN in 5-year categories 
LF pres Low frequency  DPOAEs (<1000 Hz) included in ANN 
No AMP—¥ Amplitude of  DPOAE not included in ANN training 
Mid = 80—» Number of  middle level neurons in ANN topology 
Err = 0.002 Error tolerance of  ANN within 0.02% accurate 

0-15dB 
predicted as 
0-25dB 

96% 

Al = 5 —¥ Age increment presented to ANN in 5-year categories 
LF pres Low frequency  DPOAEs (<1000 Hz) included in ANN 
No AMP—¥ Amplitude of  DPOAE not included in ANN training 
Mid = 80—» Number of  middle level neurons in ANN topology 
Err = 0.002 Error tolerance of  ANN within 0.02% accurate 

0-25dB 
predicted as 
0-25dB 

93% 

Al = 5 —¥ Age increment presented to ANN in 5-year categories 
LF pres Low frequency  DPOAEs (<1000 Hz) included in ANN 
No AMP—¥ Amplitude of  DPOAE not included in ANN training 
Mid = 80—» Number of  middle level neurons in ANN topology 
Err = 0.002 Error tolerance of  ANN within 0.02% accurate 
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Predicting Hearing Loss from  Otoacoustic Emissions Using an Artificial  Neural Network 36 

Table 6: Overall prediction accuracy across all eight 10 dB categories for  500,1000, 2000 and 4000 Hz. 

Correct 
(Within lOdB) 

Predicted into an adjacent lOdB 
Category 

More than one lOdB 
category out 

ears % ears % ears % 

500 Hz 41/120 34.2 44/120 ' 36.6 35/120 29.2 

1000 Hz 48/120 40.0 29/120 24.2 43/120 •35.8 

2000 Hz 39/120 32.0 47/120 39.0 34/120 28.0 

4000 Hz 48/120 40.0 38/120 31.0 34/120 28.0 

lOdB category added up to an additional 24% to 39%, 
and therefore  provided an indication of  severity of 
hearing loss even though it was a less specific 
classification  of  hearing. 

There are several -possibilities to explain the 
poor prediction of  categories representing hearing loss. 
The first  reason that can be suggested for  the poor 

prediction of  hearing impaired categories is that hearing 
impaired subjects might demonstrate less clear DPOAE 
responses that might influence  the correlation between 
DPOAEs and PTTs. This possibility was seen in the 
DPOAE evaluation where it took the DPOAE equipment 
longer to test a hearing impaired subject in order to get 
enough frames  of  data to regard a test as "accepted." 

100 

+ 500Hz 
ο 1000Hz 
• 2000Hz 
A 4000Hz 

. • • Linear Fit 
1/ (1+EXP(-mX-b)) 

Figure 4: Prediction accuracy and ear count correlation. 
The  South  African  Journal  of  Communication  Disorders,  Vol.  49, 2002 
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(The criterion for  a test to be accepted for  the GSI-60 
DPOAE system for  a screening test is that the DPOAE 
amplitude had to be lOdB above the noise floor  or the 
cumulative noise level had to be -18dB SPL. The 
maximum number of  frames  tested in a screening 
procedure is 400, and if  no clear response is measured in 
that time, the test is scored "timed out" which means that 
no response was obtained.) It is possible that more 
responses could be obtained from  hearing-impaired 
subjects if  the criterion for  test acceptance is lowered to 5 
dB for  example. The lowered criterion for  the acceptance 
of  a test could possibly enhance the number of  useable 
responses from  hearing-impaired subjects and might 
therefore  enhance prediction accuracy of  categories 
spanning impaired hearing. This aspect should be further 
investigated. 

Another reason for  poor prediction accuracy of 
hearing impaired categories might be that the optimal 
procedure for  data analysis has not yet been identified.  It 
can be hypothesized that another type of  neural network 
with different  topologies, learning rules and error 
tolerances would be able to make more accurate 
predictions. Another possibility is a complete new form 
of  data processing, such as "genetic programming", 
inspired by Darwinian invention and problem solving 
that "progressively breeds a population of  computer 
programs over a series of  generations" (Koza, Bennett, 
Andre, & Keane, 1999, p.3) to find  an optimal solution to 
a problem. These possibilities have yet to be investigated. 
One definite  aspect however, that seems to have 
influenced  the prediction accuracy of  hearing ability in 
categories spanning hearing impairment more than neural 
network capabilities and the underlying correlation 
between the two data sets, was the number of  ears in 
every category that the neural network had to train on. 

Neural networks need enough examples in every 
category to form  representations of  how a specific  ear's 
DPOAE type relate to its (PTT type in order to make 
accurate predictions. Even though this study attempted to 
categorize all audiograms into three groups to ensure that 
hearing impairment, was as well represented as normal 
hearing, the nature of  sensorineural hearing impairment 
tends to affect  certain frequencies  more than others, and 
low frequencies  are often  normal. In the case of  500 Hz, 
this leads to the uneven Idistribution of  many ears in 
categories .representing normal hearing and few  ears in 
hearing .loss categories. At 4000 Hz however, category 
six (50 + 55dB) had more ears (a total of  20) and was 
predicted accurately 45% of  the time and· within lOdB 
30% of  the time. Hearing loss at 4000Hz in this category 
was predicted incorrectly only 25% of  the time with a 
false  negative rate of  only 2%. The same category at 500 
Hz had only 7 ears to train on and prediction accuracy 
was never correct and within 1 OdB only 14% of  the time. 
If  the network, had more ears in every category to train 
on, prediction accuracy might have been considerably 
better. < 

To illustrate this concept, Figure 4 plots the 
number of  ears in every category against prediction 
accuracy. It clearly demonstrates that the number of  ears 
in every category had an enormous effect  on prediction 
accuracy. I 

The aim of  this study is not to describe the 
relationship between the number of  ears per category and 
prediction accuracy thereof.  However, Figure 4 shows a 

number of  possible relationships merely to illustrate the 
notion of  "more-is-better". The linear fit  (in dotted lines) 
shows that higher numbers of  ears lie significantly  above 
expectation. It is worth noting that the relationship cannot 
be linear, since any line with a slope larger than zero will 
have to cross the 100% accuracy limit at some point, 
which is of  course not possible. 

The figure  indicates an alternative fit  (the solid 
line) of  the form  1/(1 + e"mx b), that seems better and more 
intuitive since it starts out low, just like the experimental 
data, but also asymptotically approaches 100% for  large 
numbers of  ears. It has also not been established if  this 
function  has any correlation with the sigmoid function 
(Blum, 1992:39) (1 / (1 + e x ) that was used to normalize 
output of  the separate ANN layers but it seems to be a 
more likely option than a linear fit. 

For this data set there is a fairly  clear threshold 
at 32 ears per category where prediction accuracy 
suddenly surges into the 75% and higher region. Should 
any of  the example relationships in Figure 4 hold, it is 
expected that a 95% or higher accurate predictions could 
potentially be made if  an ANN receives 80 or more ears 
per category. 

CONCLUSION 

ANNs were able to subtract significant 
information  from  the DPOAE spectrum to form  an 
internal representation of  the correlation between 
DPOAEs and PTTs and used that information 
successfully  to predict normal hearing with high levels of 
accuracy as low as 500 Hz. The unsatisfactory  prediction 
of  categories representing hearing loss is most likely due 
to the shortage of  data in certain categories and not poor 
correlation between DPOAEs and PTTs of  hearing-
impaired ears or incapability of  the neural network to 
deal with this data set. With more data, it seems possible 
to predict PTTs within 10 dB from  500 Hz to 4000 Hz, 
for  hearing losses up to 65dB HL. 
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